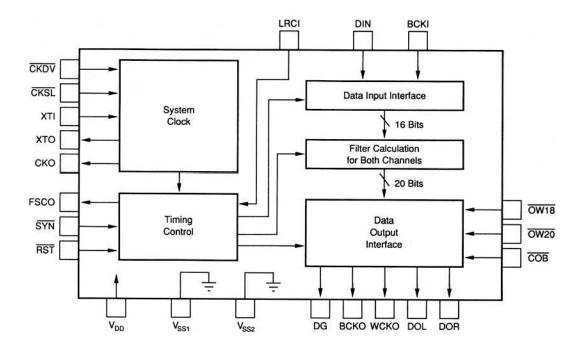


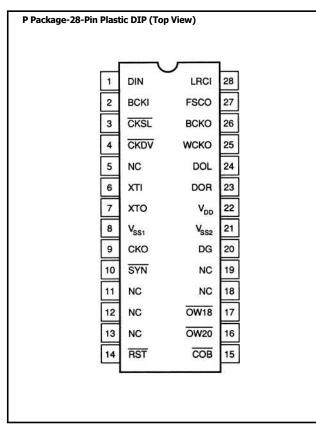
D F 1700

Dual Channel, 8x Oversampling DIGITAL FILTER


FEATURES

- DUAL CHANNEL DIGITAL
 INTERPOLATION FILTERS
- ACCEPTS 16-BIT INPUT DATA
- USER-SELECTABLE FOR 16-,18-, OR 20-BIT OUTPUT DATA
- SERIAL OUTPUT IS COMPATIBLE WITH PCM1700 AND PCM63 DACs
- PASSBAND RIPPLE < 0.00005dB
- STOPBAND ATTENUATION > 110dB
- SINGLE +5V POWER SUPPLY FOR LOW POWER DISSIPATION OF 250mW Max
- PLASTIC 28-PIN DIP AND 40-PIN SOIC PACKAGES

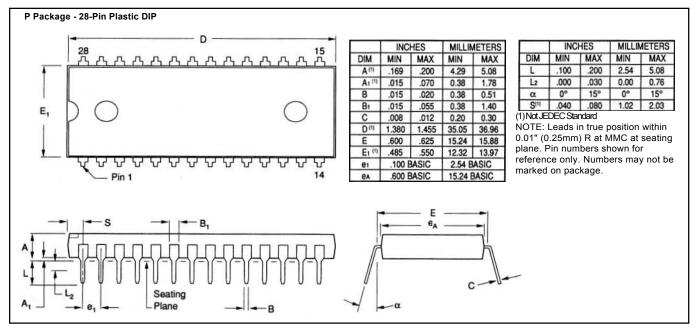
DESCRIPTION

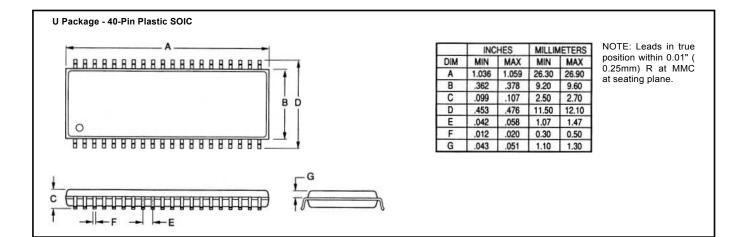

The DF1700 is a high performance, 8x oversampling CMOS digital filter. This filter accepts 16-bit input data and is user-selectable for 16-, 18-, or 20-bit output data. The 8x oversampling feature converts the input data frequency (fs) to an output data frequency of 8 x fs by digital interpolation. By providing 8x oversampled data to an audio DAC, lower order analog filters can be used at the DAC's output, thus reducing filter phase non-linearities. Oversampling with the DF1700 simultaneously improves the fidelity of the analog reconstruction and reduces analog filter complexity at the output of the DAC.

The DF1700 is available in a plastic 28-pin DIP and a 40-pin SOIC package, and is designed for compatibility with the Burr-Brown PCM1700 and PCM63 digitalto-analog converters.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Tel: (602) 746.1111 • Twx: 910. 952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (602) 889.1510 • Immediate Product Info: (800) 548-6132

PIN CONFIGURATION


U Package-40-Pin Pl	astic SOIC (T	op View)	
1	NC ●	V _{SS1}	40
2	NC	хто	39
3	NC	XTI	38
4	ско	CKDV	37
5	NC	NC	36
6	NC	NC	35
7	SYN	CKSL	34
8	NC	BCKI	33
9	NC	DIN	32
10	NC	NC	31
11	RST	LRCI	30
12	COB	FSCO	29
13	OW20	вско	28
14	OW18	WCKO	27
15	NC	NC	26
16	NC	DOL	25
17	NC	NC	24
18	DG	DOR	23
19	NC	NC	22
20	V _{SS2}	V _{DD}	21


PIN DESCRIPTION

PIN NUI	MBER			
SOIC	DIP	NAME	1/0(1)	DESCRIPTION
1	-	NC	-	
2	-	NC	-	
3	-	NC	_	
4	9	СКО	0	Clock output (same frequency as XTI
				input clock).
5	-	NC	-	
6	1220	NC	- 22	
7	10	SYN	1	H: Free-running mode;
		20		L: Forced synchronizing mode.
8	11	NC		
9	12	NC	-	
10	13	NC		
11	14	RST	- 1	H: Normal operation; L: System reset.
12	15	COB	1	Select output data format-
				H: Two's complement;
192	1.2		10	L: Complemented offset binary (COB).
13	16	OW20		Select number of output data bits. ⁽²⁾
14	17	OW18	1	Select number of output data bits. ⁽²⁾
15	_	NC	-	
16	18	NC	-	
17	19	NC	-	
18	20	DG	0	Deglitch control clock.
19	-	NC	-	
20	21	V _{SS2}	-	Ground 2.
21	22	VDD	1.000	Supply voltage (+5V).
22	-	NC	-	
23	23	DOR	0	Rch serial data output (8fs rate).
24	-	NC	ō	Laboration data and and (Ole reste)
25	24	DOL	0	Lch serial data output (8fs rate).
26	-	NC	-	
27	25	WCKO	0	Output timing control (word clock).
28	26	вско	0	Output timing control for serial data
	07	FSCO		(bit clock).
29	27		0	Internal timing clock (fs rate)
30	28	LRCI	E.	Multiplex clock for Lch/Rch input data (fs rate)—H: Lch; L: Rch.
31		NC		(Is fale)
32	1	DIN	ī	Serial data input.
32	2	BCKI	l i	Timing clock for serial input data.
34	3	CKSL	L î	Select system clock. ⁽²⁾
35	3	NC	20 9 00 71220	Select system clock.
36	5	NC		
30	4	CKDV	ī	Select system clock.(2)
37	6	XTI		Input for oscillator or external clock
30	0			(system clock).
39	7	хто	0	Output for oscillator; not connected
00		AIU AIU	ľ	when using external clock.
40	8	V _{ss1}	-	Ground 1.
		551	1	

NOTES: (1) I = Input terminal; O = Output terminal. (2) Refer to the Functional Description section for details.

MECHANICAL

DC SPECIFICATIONS

ELECTRICAL

DIGITAL CHARACTERISTICS: $V_{DD} = 4.75V$ to 5.25V, $V_{ss} = 0V$, $T_{A} = -20^{\circ}C$ to +70°C unless otherwise specified.

					DF1700P/U		
PARAMETER	PIN	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS
INPUT							
Logic Family					CMOS		
Logic Voltages	XTI	V _{IL1} V _{IH1} V _{IL2} V _{IH2}				0.3V _{DD}	
	XTI	V _{1H1}		0.7V _{DD}			
	(1)	V _{IL2}		10.00		0.5	
	(1)	V _{IH2}		2.4			
Input Leakage Current	XTI	I _{LH}	$V_{iN} = V_{DD}$		10	20	μА
14 2450	XTI	· I <u>L</u>	$V_{IN} = V_{DD}$ $V_{IN} = 0V$ $V_{IN} = V_{DD}$		10	20	μА
	(1)	I _{LH}	$V_{iN} = V_{DD}$			1	μΑ
Input Current	(1)	l _{it}	$V_{iN} = 0V$		10	20	μА
OUTPUT							
Logic Family					CMOS		
Logic Voltages	(2)	Vol	I _{oL} = 1.6mA			0.4	v v
	(2)	V _{OH}	I _{он} = -0.4mA	2.5			v
POWER SUPPLY REQUIREMENTS							
Supply Voltages		VDD		4.75	5	5.25	v
Supply Current		I _{pp}	$V_{DD} = 5V, F_{SYS}^{(3)}$			45	mA
Power Dissipation	(P _D	Nominal V _{DD}			250	mW
TEMPERATURE RANGE (Ambient, T_)							
Specification				-20		70	°C
Operating				-20		70	°C

NOTES: (1) Refers to pins LRCI, DIN, BCKI, \overrightarrow{CKSL} , \overrightarrow{CKDV} , \overrightarrow{SYN} , \overrightarrow{RST} , \overrightarrow{COB} , $\overrightarrow{OW20}$, and $\overrightarrow{OW18}$. (2) Refers to pins CKO, DG, DOL, DOR, WCKO, BCKO, and FSCO. (3) F_{sys} is the frequency of the internal system clock. $F_{sys} = F_{xt1}$ with $\overrightarrow{CKDV} = H$ and $F_{sys} = F_{xt1}/2$ with $\overrightarrow{CKDV} = L$.

AC SPECIFICATIONS

ELECTRICAL

 $V^{}_{\rm DD}$ = 4.75V to 5.25V, $V^{}_{\rm SS}$ = 0V, $T^{}_{\rm A}$ = –20°C to 70°C unless otherwise specified.

		C	ONDITIO	NC	D	F1700P	/U		Timing W	aveform
PARAMETER	SYMB	CKSL	CKDV	x fs(1)	MIN	ТҮР	MAX	UNITS		
XTI TERMINAL										
CRYSTAL OSCILLATOR									хті /	7
Oscillating Frequency	f _{MAX}	н	н	192	1		13	MHz		
	f _{MAX}	н	L	384	2		26	MHz		
	f _{MAX}	L	н	256	1		13	MHz		
	f _{MAX}	L	L	512	2		26	MHz		
EXTERNAL CLOCK										
Clock Pulse Width	t _{cw}	н	н	192	35		500	ns		
	t _{cw}	н	L	384	15		250	ns	- t _{cw} -	
	t _{cw}	L	н	256	35		500	ns	C.	
	t _{cw}	L	L	512	15		250	ns		
Clock Period	t _{cy}	н	н	192	76		1000	ns		
	t _{cy}	н	L	384	38		500	ns		
	t _{cy}	L	н	256	76		1000	ns		
	t _{cy}	L	L	512	38		500	ns		

NOTES: (1) fs = sampling frequency.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

AC SPECIFICATIONS (CONT)

ELECTRICAL

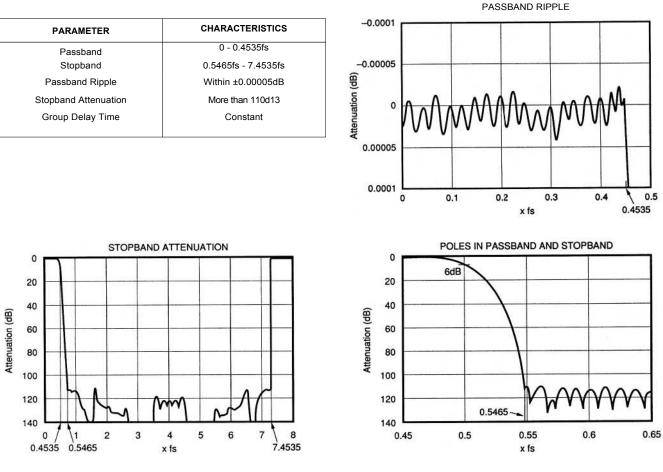
 V_{DD} = 4.75V to 5.25V, V_{ss} = 0V, T_{A} = -20°C to 70°C unless otherwise specified.

		D	F1700P	/U		Timing Waveform
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	
INPUT TIMING (BCKI, DIN, LRCI,	xTI)					
BCKI, Pulse Width	tecw	100			ns	
BCKI, Cycle Time	tacy	200			ns	
DIN, Setup Time	t _{os}	75			ns	
DIN, Hold Time	t _{DH}	75			ns	DIN X 1.5
Rising Edge of Last BCKI To Edge of LRCI	t _{BL}	75			ns	
Edge of LRCI To Rising Edge of First BCKI	t.e	75			ns	LRCI 1.5
Falling Edge of XTI To Rising Edge of LRCI	t _{xL}	20			ns	
Rising Edge of LRCI To Falling Edge of XTI	t _u	0		-	ns	

			D	F1700P	/U		Timing Waveform
PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS	
OUTPUT TIMING				1			
BCKO Delay Time	txbH	CKDV = L	35		120	ns	
from XTI	txbL	CKDV = L	35		120	ns	T _{SYS}
	txbH	CKDV = H	35		120	ns	
	txbL	CKDV = H	35	0	120	ns	
Output Delay	tbdL	C _L = 15pF	-10	0	10	ns	
	tbdH	C_ = 15pF	-10	0	10	ns	
	1 1						← tsbH ← tsbL
	1 1						txbH + txbL
	1 1						
	1 1						вско 1.5V
	1 1						
	1 1						tbdL
	1 1						
	1 1						DOL
	1 1						DOR 1.5V
	1 1						DGL C
	1 1						DGR tbdH WCKO
							1.5V

ORDERING INFORMATION

	DF1700	Ŷ
Basic Model Number		
Package Code		
P: 28-pin Plastic DIP		
U: 40-pin Plastic SOIC		


ABSOLUTE MAXIMUM RATINGS

+V _{pp}	0.3V to 7.0V
Input Voltage	0.3 to Vpp +0.3V
Soldering Temperature	
Soldering Time	
Storage Temperature	40°C to +125°C
Stresses above these ratings may perr	nanently damage the device.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

THEORETICAL FILTER CHARACTERISTICS

THEORY OF OPERATION

The DF1700 has dual filters. Each filter consists of three cascaded, 2x oversampling finite impulse response (FIR) filters as shown in Figure 1. The output of the first, 153-tap filter is again 2x oversampled by the second, 29-tap filter. This 4x oversampled data is again 2x oversampled by a third, 17-tap filter. This oversampling technique further separates the desired analog signal and the sampling frequency. This is

desirable because a low-pass filter is required at the output of a DAC to remove all unwanted frequency components caused by the sampling frequency. With the analog signal frequency further separated from the sampling frequency, a lower order analog filter with much better phase characteristics can be used at the output of the DAC without worrying about fold-over noise.

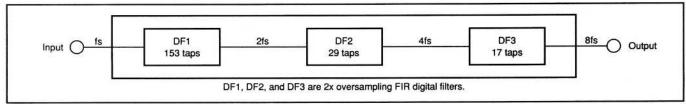


FIGURE 1. Block Diagram of Channel Filter.

FUNCTIONAL DESCRIPTION

SYSTEM CLOCK

The internal system clock of the DF1700 is generated by either a crystal oscillator connected across pins XTI and XTO driving the internal clock generator, or an external clock applied at pin XTI. Four different XTI clock frequencies can be obtained with the control of pins CKDV and CKSL. This will provide the correct clock period of the internal system clock as indicated in Table I. For XTI clock frequencies of 384fs and 512fs, the clock is divided by two for internal use. The system clock signal of the same frequency as pin XTI is available at pin CKO.

DATA

Serial Data Input

The 16-bit input data format is two's complement and MSB first. The serial data input timing is the rising edge of BCKI (Figure 2). Consequently the input serial data must be changed at the falling edge of BCKI. The input data is latched to the internal register at the edge of LRCI.

Serial Data Output

The serial data output mode is selected by pins $\overline{OW18}$ and $\overline{OW20}$ as shown in Table II.

The output data format is MSB first and either two's complement or complementary offset binary (COB). The format of output data is selected by the COB pin:

 $\overline{\text{COB}} = \text{H}$ Two's complement

COB = L Complemented Offset Binary (COB)

The output data from the DF1700 can be fed directly to the data inputs of either the PCM1700 or PCM63 with the BCKO clock output serving as the input clock to these DACs. The data bits will be clocked into the DAC on the rising edges of BCKO (Figure 3).

COND	ITION	XTI	CLOCK PERIOD OF		
CKDV	CKSL	CLOCK (F _{xi})	INTERNAL SYSTEM CLOCK		
н	н	192fs	1/F _{xi}		
н	L	256fs	1/F _{xi}		
L	н	384fs	2/F _{x1}		
L	L	512fs	2/F _{x1}		

NOTE: fs = sampling frequency.

TABLE I. System Clock Frequency Selection.

OW18	OW20	NO. OF OUTPUT DATA BITS
н	н	16
L	н	18
н	L	20

TABLE II. Programming the Number of Output Data Bits.

CLOCK SYNCHRONIZATION

The internal clock for the arithmetic circuitry and output interface is derived by the system clock from the XTI pin, and is independent of the input circuitry timing from the BCKI and LRCI input clocks. There are two synchronization modes: the Free-Running Mode and the Forced Synchronization Mode.

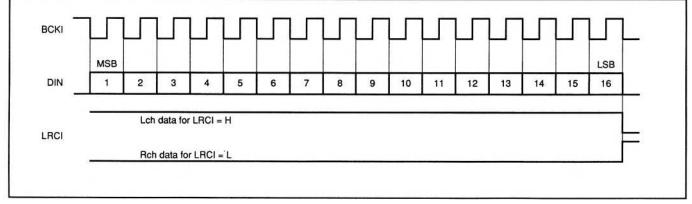


FIGURE 2. Input Timing Waveforms for Clocking Data into the DF1700.



FIGURE 3. Output Data Timing Waveforms.

Free-Running Mode (SYN = H)

No adjustment of the internal clock takes place for phase differences between the internal clock and the LRCI clock of up to $\pm 3/8$ of the input data sample period (1/fs). Hence, internal timing is not affected even if jitter is present on the LRCI clock input, and no jitter or timing glitches appear on the data output. If the clock phase differences exceed the $\pm 3/8$ fs limit, or if the RESET function is executed, the internal clock is synchronized to the rising edge of LRCI.

Forced Synchronization Mode (SYN = L)

In this mode the internal clock is resynchronized at each rising edge of LRCI. Note that device misoperation may occur if jitter in the LRCI input shortens the LRCI period below the required system clock period. Furthermore, if the LRCI period is too long, internal arithmetic operations will function correctly, but output timing is adversely affected.

The internal timing clock derived from the system clock is available at the FSCO pin.

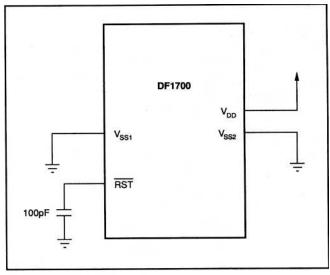
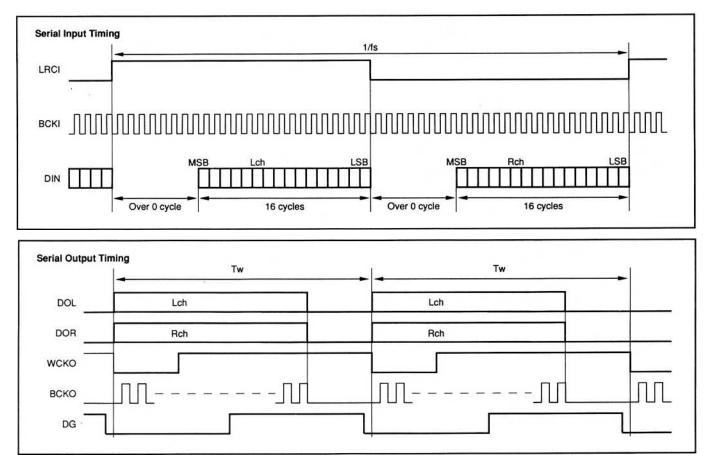



FIGURE 4. System Reset Circuit.

SYSTEM RESET (SYN = H). It is not necessary to reset in the forced synchroThe RESET function is useful for synchronizing the internal nization mode. Reset is also not required if the output timing arithmetic circuitry and output section clock with the LRCI needs not be synchronized with LRCI. Figure 4 shows the external input clock when operating in the free-running mode connection to reset the DF1700 on power-up.

TIMING DIAGRAMS

APPLICATIONS

The most common application for the DF1700 is in high performance digital audio playback such as compact disc players. Digital information from a compact disc is often formatted using a digital interface format receiver chip (DIFRC). The DF1700 can be interfaced directly to the output of many popular DIFRCs as shown in Figure 5.

The fs data stream which has been formatted by the DIFRC is 8x oversampled by the DF1700 and separated into left and right channel data for input to the PCM1700 DAC (Figure 6). The analog stereo outputs from the PCM1700 each pass

through a three pole Generalized Immittance Converter (GIC) low-pass filter which has extremely low distortion and negligible phase shift. An evaluation board, the DEM 1143, is available from Burr-Brown for the PCM 1700/DF1700. This board has the features mentioned above as well as an AES/EBU interface and breadboard area for user experimentation. Figure 7 shows a similar circuit diagram with the DF1700 providing 8x oversampled data to a pair of PCM63 DACs.

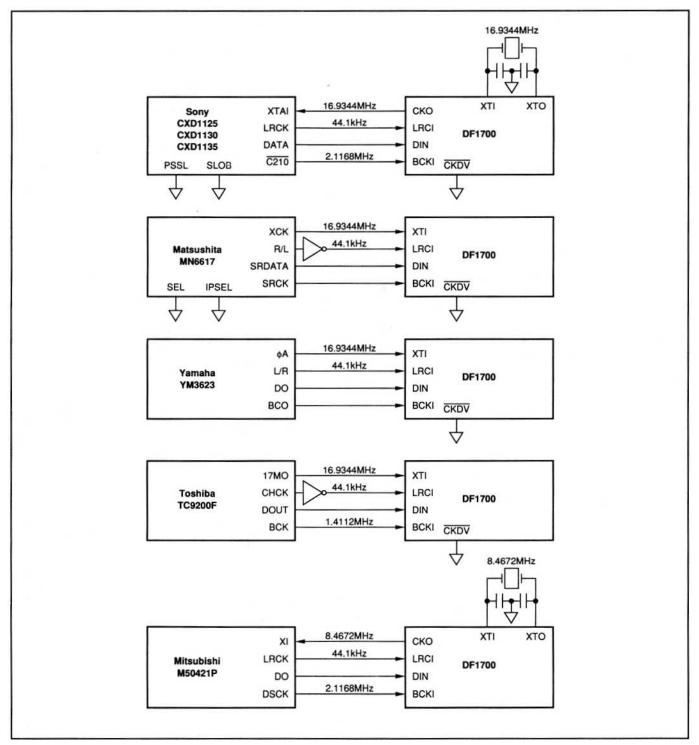


FIGURE 5. Interfacing the DF1700 to Various Digital Interface Format Receiver Chips (DIFRCs).

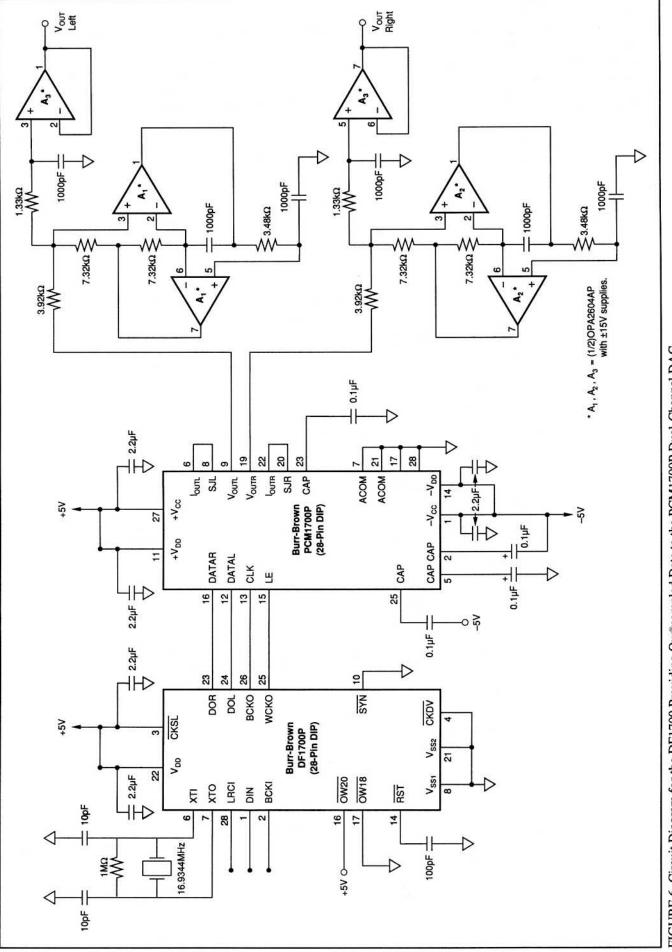


FIGURE 6. Circuit Diagram for the DF1700 Providing Oversampled Data to the PCM1700P Dual-Channel DAC.

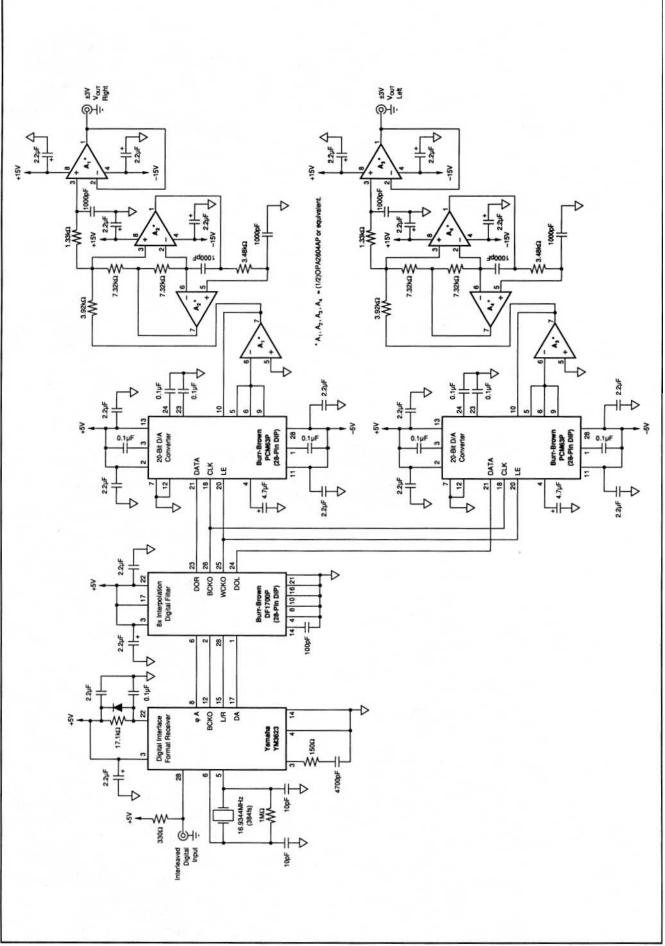


FIGURE 7. Circuit Diagram for the DF1700 Providing Oversampled Data to a Pair of PCM63P DACs.